返回 满分5 -> 初中数学 首页  

    在矩形ABCD中,AB3AD4,点PAB边上的动点(PAB不重合),将△BCP沿CP翻折,点B的对应点B1在矩形外,PB1ADECB1AD于点F

1)如图1,求证:△APE∽△DFC

2)如图1,如果EFPE,求BP的长;

3)如图2,连接BB′交AD于点QEQQF85,求tanPCB

 

如图,直线y2x+2y轴交于A点,与反比例函数yx0)的图象交于点M,过MMHx轴于点H,且tanAHO2

1)求H点的坐标及k的值;

2)点Py轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P点坐标;

3)点Na1)是反比例函数yx0)图象上的点,点Qm0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.

 

    在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字012;乙袋中的小球上分别标有数字﹣1,﹣21.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(xy).

1)请你用画树状图或列表的方法,写出点M所有可能的坐标;

2)求点Mxy)落在函数y=﹣的图象上的概率.

 

    设二次函数yax2+bx+c,当x3时取得最大值10,并且它的图象在x轴上所截得的线段长为4,求abc的值.

 

    如图,ABO的直径,弦CDAB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD的延长线于点E,交AB的延长线于点F,且EGEK

1)求证:EFO的切线;

2)若O的半径为13CH12 ,求FG的长.

 

如图是小明设计利用光线来测量某古城墙CD高度的示意图,如果镜子P与古城墙的距离PD=12米,镜子P与小明的距离BP=1.5米,小明刚好从镜子中看到古城墙顶端点C,小明眼睛距地面的高度AB=1.2米,那么该古城墙的高度是?

 

如图,在△ABC中,AB6cmBC7cm,∠ABC30°,点PA点出发,以1cm/s的速度向B点移动,点QB点出发,以2cm/s的速度向C点移动.如果PQ两点同时出发,经过几秒后△PBQ的面积等于4cm2

 

已知O是坐标原点,AB的坐标分别为(3,1),(2,﹣1):

(1)画出OAB绕点O顺时针旋转90°后得到的OA1B1

(2)以O为位似中心,相似比为2,在y轴左侧将OAB放大,得到OA2B2,在网格中画出OA2B2并直接写出A2B2两点坐标.

 

    用适当的方法解方程:

1)(x+1)(x2)=x+1

2)(2x52﹣(x220

 

ABC中,AB=6cm,点PAB上,且∠ACP=B,若点PAB的三等分点,则AC的长是_____

 

共1148646条记录 当前(1/114865) 首页 上一页 1 2 3 4 5 6 下一页 末页