已知椭圆的离心率为,椭圆上一点P到两焦点距离之和为12,则b=( )
A.8 B.6 C.5 D.4
椭圆的离心率为( )
A. 1 B. C. D.
命题“若a2+b2=0,则a=0且b=0”的逆否命题是( )
A.若a2+b2≠0,则a≠0且b≠0 B.若a2+b2≠0,则a≠0或b≠0
C.若a=0且b=0,则a2+b2≠0 D.若a≠0或b≠0,则a2+b2≠0
命题“”的否定是( )
A. B.
C. D.
已知函数.
(1)求不等式的解集;
(2)正数满足,证明:.
在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求面积的最大值.
已知函数,其中,为自然对数的底数.
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,求的取值范围
已知等差数列满足,.设正项等比数列的前项和为,且,.
(1)求数列、的通项公式;
(2)设,数列的前项和为,求.
某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第
第次
次
收费比率
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数
人数
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.
已知正方形ABCD,E,F分别为AB,CD的中点,将△ADE沿DE折起,使△ACD为等边三角形,如图所示,记二面角A-DE-C的大小为.
(1)证明:点A在平面BCDE内的射影G在直线EF上;
(2)求角的正弦值.