答案:
B
【解析】
由已知可分析出函数是偶函数,则其零点必然关于原点对称,故在上所有的零点的和为,则函数在上所有的零点的和,即函数在上所有的零点之和,求出上所有零点,可得答案.
解:函数是定义在上的奇函数,.
又函数,
,
函数是偶函数,
函数的零点都是以相反数的形式成对出现的.
函数在上所有的零点的和为,
函数在上所有的零点的和,即函数在上所有的零点之和.
由时,,
即
函数在上的值域为,当且仅当时,
又当时,
函数在上的值域为,
函数在上的值域为,
函数在上的值域为,当且仅当时,,
函数在上的值域为,当且仅当时,,
故在上恒成立,在上无零点,
同理在上无零点,
依此类推,函数在无零点,
综上函数在上的所有零点之和为8
故选:.