返回 满分5 > 高中数学试题 首页  

改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

交付金额(元)

支付方式

0,1000]

1000,2000]

大于2000

仅使用A

18

9

3

仅使用B

10

14

1

 

(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月AB两种支付方式都使用的概率;

(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.

 

答案:
(Ⅰ) ; (Ⅱ)见解析; (Ⅲ)见解析. 【解析】 (Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值; (Ⅱ)首先确定X可能的取值,然后求得相应的概率值可得分布列,最后求解数学期望即可. (Ⅲ)由题意结合概率的定义给出结论即可. (Ⅰ)由题意可知,两种支付方式都是用的人数为:人,则: 该学生上个月A,B两种支付方式都使用的概率. (Ⅱ)由题意可知, 仅使用A支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占, 仅使用B支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占, 且X可能的取值为0,1,2. ,,, X的分布列为: X 0 1 2 其数学期望:. (Ⅲ)我们不认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.理由如下: 随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率. 学校是一个相对消费稳定的地方,每个学生根据自己的实际情况每个月的消费应该相对固定,出现题中这种现象可能是发生了“小概率事件”.
推荐试题