返回 满分5 > 高中数学试题 首页  

如图,多面体中,平面平面四边形为平行四边形.

1)证明:

2)若,求二面角的余弦值.

 

答案:
(1)证明见解析(2) 【解析】 (1)先通过平面平面得到,再结合,可得平面,进而可得结论; (2)取的中点,的中点,连接,,以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系,求出平面的一个法向量以及平面的一个法向量,求这两个法向量的夹角即可得结果. 解:(1)因为平面平面,交线为,又, 所以平面,,又,, 则平面,平面, 所以,; (2)取的中点,的中点,连接,,则平面,平面; 以点为坐标原点,分别以,,为轴,轴,轴建立空间直角坐标系如图所示, 已知,则,, ,,,, 则,, 设平面的一个法向量, 由得令,则,, 即; 平面的一个法向量为; . 所以二面角的余弦值为.
推荐试题