已知为单位正方体,黑白两只蚂蚁从点出发沿棱向前爬行,每走完一条棱称为“走完一段”,白蚂蚁爬行的路线是,黑蚂蚁爬行的路线是,它们都遵循如下规则:所爬行的第段与第段所在直线必须是异面直线(其中是自然数),设黑、白蚂蚁都走完2012段后各停止在正方体的某个顶点处,这时黑、白两只蚂蚁的距离是______________.
如图,半径为4的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是_________.
已知平面α,β,γ是空间中三个不同的平面,直线l,m是空间中两条不同的直线,若α⊥γ,γ∩α=m,γ∩β=l,l⊥m,则
①m⊥β;②l⊥α;③β⊥γ;④α⊥β.
由上述条件可推出的结论有________(请将你认为正确的结论的序号都填上).
已知,,且,则______.
如图(1)所示,一只装了水的密封瓶子,其内部可以看成是由半径为1cm和半径为3cm的两个圆柱组成的简单几何体.当这个几何体如图(2)水平放置时,液面高度为20cm,当这个几何体如图(3)水平放置时,液面高度为28cm,则这个简单几何体的总高度为( )
A.29cm B.30cm
C.32cm D.48cm
连结球面上两点的线段称为球的弦.半径为4的球的两条弦、的长度分别等于、,、分别为、的中点,每条弦的两端都在球面上运动,有下列四个命题:
①弦、可能相交于点②弦、可能相交于点
③的最大值为5 ④的最小值为1
其中真命题的个数为
A.1个 B.2个 C.3个 D.4个