返回 满分5 > 高中数学试题 首页  

如图,椭圆的左、右焦点为,右顶点为,上顶点为,若轴垂直,且.

(1)求椭圆方程;

(2)过点且不垂直于坐标轴的直线与椭圆交于两点,已知点,当时,求满足的直线的斜率的取值范围.

 

答案:
(1) (2) 【解析】 试题(1)由两条直线平行可得,由点在曲线上可得其纵坐标为,由两者相等可得,结合,解出方程组即可;(2)设直线的方程为:,,,与椭圆方程联立利用根与系数的关系得到和,线段的垂直平分线方程为,求出与轴的交,由交点横坐标列出不等式,解出即可得出结果. 试题解析:(1)设,由轴,知,,∴, 又由得,∴,∴, 又,, ∴,,∴椭圆方程为. (2)设,,直线的方程为:, 联立,得,, 设线段的垂直平分线方程为:. 令,得, 由题意知,为线段的垂直平分线与轴的交点,所以,且,所以.
推荐试题