答案:
(1),;(2)
【解析】
试题(1)利用等差数列,等比数列的通项公式先求得公差和公比,即得到结论;(2)利用分组求和法,由等差数列及等比数列的前n项和公式即可求得数列前n项和.
试题解析:
(Ⅰ)设等差数列{an}的公差为d,由题意得
d=== 3.∴an=a1+(n﹣1)d=3n
设等比数列{bn﹣an}的公比为q,则
q3===8,∴q=2,
∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1, ∴bn=3n+2n﹣1
(Ⅱ)由(Ⅰ)知bn=3n+2n﹣1, ∵数列{3n}的前n项和为n(n+1),
数列{2n﹣1}的前n项和为1×= 2n﹣1,
∴数列{bn}的前n项和为;