答案:
C
【解析】
画出函数f(x)的图象,结合对数函数的图象和性质,可得x1•x2=1,x1+x22,(4﹣x3)•(4﹣x4)=1,且x1+x2+x3+x4=8,则不等式kx3x4+x12+x22≥k+11恒成立,可化为:k恒成立,求出的最大值,可得k的范围,进而得到实数k的最小值.
函数f(x)的图象如下图所示:
当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,
|lnx1|=|lnx2|,即x1•x2=1,x1+x22,
|ln(4﹣x3)|=|ln(4﹣x4)|,即(4﹣x3)•(4﹣x4)=1,
且x1+x2+x3+x4=8,
若不等式kx3x4+x12+x22≥k+11恒成立,
则k恒成立,
由[(x1+x2)﹣48]≤2
故k≥2,
故实数k的最小值为2,
故选:C.