答案:
(1);
(2)面积最大为.
【解析】
(1)设出点的坐标,由为线段的中点得到的坐标,把的坐标代入圆整理得线段的中点的轨迹方程;(2)联立直线和椭圆,求出的长;设过且与直线平行的直线为,当直线与椭圆相切时,两直线的距离取最大,求出,和两平行直线间的距离,再由面积公式,即可得到最大值.
设,由题意,
为线段的中点,
即
又在圆上,
,即,
所以轨迹为椭圆,且方程为.
联立直线和椭圆,
得到,即
即有
设过且与直线平行的直线为,
当直线与椭圆相切时,两直线的距离取最大,
将代入椭圆方程得:
由相切的条件得
解得,
则所求直线为或,
故与直线的距离为,
则的面积的最大值为.