答案:
(1)证明见解析;(2)存在,.
【解析】
(1)利用,可得平面,根据面面垂直的判定定理可证平面平面;
(2) 由底面,得平面平面.将问题转化为点到直线的距离有无最大值即可解决.
(1)证明:因为,为线段的中点,所以,
因为底面,平面,所以,
又因为底面为正方形,所以,,
所以平面,
因为平面,所以,
因为,所以平面,
因为平面,所以平面平面.
(2)由底面,则平面平面,
所以点到平面的距离(三棱锥的高)等于点到直线的距离,
因此,当点在线段,上运动时,三棱锥的高小于或等于2,
当点在线段上运动时,三棱锥的高为2,
因为的面积为,
所以当点在线段上,三棱锥的体积取得最大值,
最大值为.
由于三棱锥的体积等于三棱锥的体积,
所以三棱锥的体积存在最大值.