返回 满分5 > 高中数学试题 首页  

数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为(    )

A. B. C. D.

 

答案:
A 【解析】 设出点C的坐标,由重心坐标公式求得重心,代入欧拉线得一方程,求出AB的垂直平分线,和欧拉线方程联立求得三角形的外心,由外心到两个顶点的距离相等得另一方程,两方程联立求得点C的坐标 设C(m,n),由重心坐标公式得,三角形ABC的重心为代入欧拉线方程得:整理得:m-n+4=0 ① AB的中点为(1,2), AB的中垂线方程为, 即x-2y+3=0.联立 解得 ∴△ABC的外心为(-1,1). 则(m+1)2+(n-1)2=32+12=10,整理得:m2+n2+2m-2n=8  ② 联立①②得:m=-4,n=0或m=0,n=4. 当m=0,n=4时B,C重合,舍去.∴顶点C的坐标是(-4,0).故选A
推荐试题