答案:
(1);(2).
【解析】
(1)求出,再求恒成立,以及恒成立时,的取值范围;
(2)由已知,在区间内恰有一个零点,转化为在区间内恰有两个零点,由(1)的结论对分类讨论,根据单调性,结合零点存在性定理,即可求出结论.
(1)由题意得,则,
当函数在区间上单调递增时,
在区间上恒成立.
∴(其中),解得.
当函数在区间上单调递减时,
在区间上恒成立,
∴(其中),解得.
综上所述,实数的取值范围是.
(2).
由,知在区间内恰有一个零点,
设该零点为,则在区间内不单调.
∴在区间内存在零点,
同理在区间内存在零点.
∴在区间内恰有两个零点.
由(1)易知,当时,在区间上单调递增,
故在区间内至多有一个零点,不合题意.
当时,在区间上单调递减,
故在区间内至多有一个零点,不合题意,
∴.令,得,
∴函数在区间上单凋递减,
在区间上单调递增.
记的两个零点为,
∴,必有.
由,得.
∴
又∵,
∴.
综上所述,实数的取值范围为.