答案:
(1);(2).
【解析】
(1)令,求出的范围,再由指数函数的单调性,即可求出结论;
(2)对分类讨论,分别求出以及的最小值或范围,与的最小值建立方程关系,求出的值,进而求出的取值关系.
(1)当时,,
令,
∵∴,
而是增函数,∴,
∴函数的值域是.
(2)当时,则在上单调递减,
在上单调递增,所以的最小值为,
在上单调递增,最小值为,
而的最小值为,所以这种情况不可能.
当时,则在上单调递减且没有最小值,
在上单调递增最小值为,
所以的最小值为,解得(满足题意),
所以,解得.
所以实数的取值范围是.