答案:
(Ⅰ)详见解析 (Ⅱ)
【解析】
试题(Ⅰ)要证明平面BCD,需要证明,,证明时主要是利用已知条件中的线段长度满足勾股定理和等腰三角形三线合一的性质(Ⅱ)中由已知条件空间直角坐标系容易建立,因此可采用空间向量求解,以为坐标原点,以方向为轴,轴,轴正方向建立空间直角坐标系,
求出平面的法向量和斜线的方向向量,代入公式计算
试题解析:(Ⅰ)证明:为的中点,,
,,,,
又,,
,均在平面内,平面
(Ⅱ)方法一:以为坐标原点,以方向为轴,轴,轴正方向建立空间直角坐标系,则,
设为平面的法向量,则,
取,
,则点到平面的距离为
方法二:设点在上,且,连,
为的中点,
平面,平面,
平面,平面
平面,平面平面,且交线为
过点作于点,则平面
分别为的中点,则平面,平面,
平面,点到平面的距离即,
故点到平面的距离为