已知曲线的极坐标方程为,倾斜角为的直线过点.
(1)求曲线的直角坐标方程和直线的参数方程;
(2)设是过点且关于直线对称的两条直线,与交于两点,与交于两点.求证:.
已知函数,直线为曲线的切线(为自然对数的底数).
(1)求实数的值;
(2)用表示中的最小值,设函数,若函数
为增函数,求实数的取值范围.
已如抛物线的焦点为,过点且倾斜角为的直线被截得的线段长为8.
(1)求抛物线的方程;
(2)已知点是抛物线上的动点,以为圆心的圆过点,且圆与直线相交于两点,是否存在实数使?若是,求出的值;若不存在,请说明理由.
2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.
(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;
(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.
如图,四边形为矩形,在上,且,以为折痕把折起,使点到达点的位置,且在平面上的射影在上.
(1)证明:;
(2)求直线与平面所成角的正弦值.
在中,内角的对边分别为外接圆的半径为,且.
(1)若的面积为,求的值;
(2)若为锐角三角形,求的取值范围.