已如抛物线的焦点为,过点且倾斜角为的直线被截得的线段长为8.
(1)求抛物线的方程;
(2)已知点是抛物线上的动点,以为圆心的圆过点,且圆与直线相交于两点,是否存在实数使?若是,求出的值;若不存在,请说明理由.
2019年是中华人民共和国成立70周年.为了让人民了解建国70周年的风雨历程,某地的民调机构随机选取了该地的100名市民进行调查,将他们的年龄分成6段:,,…,,并绘制了如图所示的频率分布直方图.
(1)现从年龄在,,内的人员中按分层抽样的方法抽取8人,再从这8人中随机选取3人进行座谈,用表示年龄在)内的人数,求的分布列和数学期望;
(2)若用样本的频率代替概率,用随机抽样的方法从该地抽取20名市民进行调查,其中有名市民的年龄在的概率为.当最大时,求的值.
如图,四边形为矩形,在上,且,以为折痕把折起,使点到达点的位置,且在平面上的射影在上.
(1)证明:;
(2)求直线与平面所成角的正弦值.
在中,内角的对边分别为外接圆的半径为,且.
(1)若的面积为,求的值;
(2)若为锐角三角形,求的取值范围.
分别为菱形的边的中点,将菱形沿对角线折起,使点不在平面内,则在翻折过程中,以下命题正确的是___________.(写出所有正确命题的序号)
①平面;②异面直线与所成的角为定值;③在二面角逐渐渐变小的过程中,三棱锥的外接球半径先变小后变大;④若存在某个位程,使得直线与直线垂直,则的取值范围是.
已知函数,曲线在点处的切线方程是,则曲线在点处的切线方程是_________.