返回 满分5 > 高中物理试题 首页  

如图所示,一光滑的半圆形轨道处于竖直平面内,并和一粗糙的斜面相接,其半径大小为R=0.4m,直径BC在竖直方向上,一小物体放在斜面上的A点,离水平面高度为h=3m,小物体与斜面之间的动摩擦因数为μ=0.5,斜面倾角θ=37o。已知sin37o=0.6,cos37o=0.8,重力加速度g=10m/s2,现在把小物体从静止开始自由释放,求:

说明: 6ec8aac122bd4f6e

(1)小物体运动到斜面底端B点时速度的大小?

(2)证明小物体可以沿半圆形轨道运动到最高点C;

(3)小物体离开半圆轨道后第一次落到斜面上时,其速度v的大小

 

答案:
(1) (2)Vc=2(m/s) (3) 【解析】 (1)根据动能定理:  又: 解得: (2)小物体在C点,有: 当N=0时,Vc有最小值,可得: 从B到C,由机械能守恒,可得: 解得:Vc=2(m/s) (3)设落到斜面时水平位移为S,下落高度为h,由动能定理: 又:  联立可得:
推荐试题