已知双曲线(a>0,b>0)的右焦点为F(3,0),左、右顶点分别为M,N,点P是E在第一象限上的任意一点,且满足kPM•kPN=8.
(1)求双曲线E的方程;
(2)若直线PN与双曲线E的渐近线在第四象限的交点为A,且△PAF的面积不小于3,求直线PN的斜率k的取值范围.
如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,△DAB≌△DCB,E为线段BD上的点,且EA=EB=ED=AB,延长CE交AD于点F.
(1)若G为PD的中点,求证平面PAD⊥平面CGF;
(2)若AD=AP=6,求平面BCP与平面DCP所成锐二面角的余弦值.
在△ABC中,角A,B,C的对边分别为a,b,c,且满足.
(1)求角A;
(2)若a,b,求边c的长.
已知数列{an}中,a1=0,an+1=an+6n+3,数列{bn}满足bn=n,则数列{bn}的最大项为第_____项
已知抛物线C1的顶点在坐标原点,准线为x=﹣3,圆C2:(x﹣3)2+y2=1,过圆心C2的直线l与抛物线C1交于点A,B,l与圆C2交于点M,N,且|AM|<|AN|,则|AM||BM|的最小值为_____.
在(x)6的展开式中,x3的系数为_____.