甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A. B. C. D.
某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )
A.至多有一次中靶
B.只有一次中靶
C.两次都中靶
D.两次都不中靶
下列赋值语句正确的是( )
A. s=a+1 B. a+1=s
C. s-1=a D. s-a=1
已知集合,其中,是函数定义城内任意不相等的两个实数.
(1)若,同时,求证:;
(2)判断是否在集合A中,并说明理由;
(3)设函数的定义域为B,函数的值域为C.函数满足以下3个条件:
①,②,③.试确定一个满足以上3个条件的函数要对满足的条件进行说明).
设函数是定义域为R的奇函数.
(1)求实数k的值;
(2)若,试判断函数的单调性,并求不等式的解集;
(3)若,设,在上的最小值为-1,求实数m的值.
某村充分利用自身资源,大力发展养殖业以增加收入.计划共投入80万元,全部用于甲、乙两个项目,要求每个项目至少要投入20万元在对市场进行调研时发现甲项目的收益与投入x(单位:万元)满足,乙项目的收益与投入x(单位:万元)满足.
(1)当甲项日的投入为25万元时,求甲、乙两个项目的总收益;
(2)问甲、乙两个项目各投入多少万元时,总收益最大?