已知点P是圆O:x2+y2=3上的动点,过P作x轴的垂线,垂足为Q,点M满足.
(1)求点M的轨迹C方程;
(2)若F1,F2的坐标分别为,,点,过F1作直线l1⊥NF1,过F2作直线l2⊥NF2,求证:l1,l2交点在M的轨迹C上.
设等差数列的前n项和为Sn,其中.
(1)求数列的通项公式;
(2)若Sn,2(an+1+1),Sn+2成等比数列,求正整数n的值.
命题“方程有两个正根”.命题“方程无实根”,这两个命题有且只有一个成立,试求实数的取值范围.
设双曲线的方程为.
(1)求的实轴长、虚轴长及焦距;
(2)若抛物线的焦点为双曲线的右顶点,且直线与抛物线交于两点,若(为坐标原点),求的值.
在中,角的对边分别为,为的面积,若.
(1)求;
(2)若,求的值.
已知等差数列中,,,则数列{}的前97项的和T97=_____.