返回 满分5 > 高中数学试题 首页  

已知圆,直线,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.

1)求E的方程;

2)若点ABE上的两个动点,O为坐标原点,且,求证:直线AB恒过定点.

 

答案:
(1); (2)见解析 【解析】 (1)由抛物线定义可知动圆的圆心轨迹为抛物线,根据焦点及准线方程可求得抛物线的标准方程. (2)设出直线AB的方程,联立抛物线,化简后结合韦达定理,表示出,根据等量关系可求得直线方程的截距,即可求得所过定点的坐标. (1)由题意动圆P与相切,且与定圆外切 所以动点P到的距离与到直线的距离相等 由抛物线的定义知,点P的轨迹是以为焦点,直线为准线的抛物线 故所求P的轨迹方程E为 (2)证明:设直线,,, 将直线AB代入到中化简得, 所以, 又因为 所以 则直线AB为恒过定点
推荐试题