答案:
D
【解析】
试题求函数f(x)定义域,及f(﹣x)便得到f(x)为奇函数,并能够通过求f′(x)判断f(x)在R上单调递增,从而得到sinθ>m﹣1,也就是对任意的都有sinθ>m﹣1成立,根据0<sinθ≤1,即可得出m的取值范围.
f(x)的定义域为R,f(﹣x)=﹣f(x);
f′(x)=ex+e﹣x>0;
∴f(x)在R上单调递增;
由f(sinθ)+f(1﹣m)>0得,f(sinθ)>f(m﹣1);
∴sinθ>m﹣1;
即对任意θ∈都有m﹣1<sinθ成立;
∵0<sinθ≤1;
∴m﹣1≤0;
∴实数m的取值范围是(﹣∞,1].
故选:D.