如图,在四校锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,边长为4的正△PAD所在平面与平面ABCD垂直,点E是AD的中点,点Q是侧棱PC的中点.
(1)求四棱锥P﹣ABCD的体积;
(2)求证:PA∥平面BDQ;
(3)在线段AB上是否存在点F,使直线PF与平面PAD所成的角为30°?若存在,求出AF的长,若不存在,请说明理由?
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知bcos(A)asin(B)=0,且sinA,sinB,2sinC成等比数列.
(1)求角B;
(2)若a+c=λb(λ∈R),求λ的值.
已知数列{an}满足,且.
(1)求证:数列是等差数列,并求出数列的通项公式;
(2)求数列的前项和.
茎叶图记录了甲,乙两组各四名同学单位时间内引体向上的次数,乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(1)如果X=8,求乙组同学单位时间内引体向上次数的平均数和方差;
(2)如果X=9,分别从甲,乙两组中随机选取一名同学,求这两名同学单位时间内引体向上次数和为19的概率.
设f(x)=asin2x+bcos2x(a,b∈R,ab≠0),若f(x)对一切x∈R恒成立,给出以下结论:
①;
②;
③f(x)的单调递增区间是;
④函数y=f(x)既不是奇函数也不是偶函数;
⑤存在经过点(a,b)的直线与函数f(x)的图象不相交,其中正确结论为_____
如图,在平行四边形ABCD中,AB=1,AD=2,点E,F,G,H分别是AB,BC,CD,AD边上的中点,则等于_____.