设函数f(x)=lnx-x2+x.
(I)求f(x)的单调区间;
(II)求f(x)在区间[,e]上的最大值.
在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点形成轨迹.
(1)求轨迹的方程;
(2)若直线与曲线交于两点,为曲线上一动点,求面积的最大值
设命题:函数无极值.命题,
(1)若为真命题,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围。
在直角坐标系中,曲线(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线.
(1)求的普通方程和的直角坐标方程;
(2)若过原点的直线与曲线,分别相交于异于原点的点,,求的最大值.
对于函数,若其定义域内存在两个不同的实数, 使得成立,则称函数具有性质,若函数具有性质,则实数的取值范围是__________.
已知函数是奇函数,,当时,则不等式<0的解集为_______.