圆周率是无理数,小数部分无限不循环,毫无规律,但数学家们发现可以用一列有规律的数相加得到:.若将上式看作数列的各项求和,则的通项公式可以是( )
A. B.
C. D.
设,,是空间中三条不同的直线,已知,则“”是“”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
已知,复数,在复平面内对应的点重合,则( )
A., B., C., D.,
设集合,,则( )
A. B. C. D.
已知正数,,满足等式.
证明:(1);
(2).
在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的极坐标方程为.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)若点为曲线上的动点,求中点到直线的距离的最小值