设集合,,则( )
A. B. C. D.
已知正数,,满足等式.
证明:(1);
(2).
在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,点的极坐标为,曲线的极坐标方程为.
(1)写出直线的普通方程和曲线的直角坐标方程;
(2)若点为曲线上的动点,求中点到直线的距离的最小值
已知函数在区间内没有极值点.
(1)求实数的取值范围;
(2)若函数在区间的最大值为且最小值为,求的取值范围.
参考数据:.
过的直线与抛物线交于,两点,以,两点为切点分别作抛物线的切线,,设与交于点.
(1)求;
(2)过,的直线交抛物线于,两点,证明:,并求四边形面积的最小值.
图1是由正方形,直角梯形,三角形组成的一个平面图形,其中,,将其沿,折起使得与重合,连接,如图2.
(1)证明:图2中的,,,四点共面,且平面平面;
(2)求图2中的点到平面的距离.