已知数列{an}满足:a1=,an+1=(n∈N*).(其中e为自然对数的底数,e=2.71828…)
(1)证明:an+1>an(n∈N*);
(2)设bn=1-an,是否存在实数M>0,使得b1+b2+…+bn≤M对任意n∈N*成立?若存在,求出M的一个值;若不存在,请说明理由.
答案:
(1)证明见解析(2)不存在,理由见解析
【解析】
(1)构造函数证明即可得证;
(2)先用数学归纳法证明,则bn=1-an,取,通过转化即可证明.
考虑函数,则,
由得,由得,
所以函数在单调递减,单调递增,
所以,即,当且仅当时取得等号,
所以,当等号成立时,即,但a1=,
所以an+1>an(n∈N*);
(2)不存在,理由如下:
先用数学归纳法证明
当n=1时,满足题意;
假设当n=k时命题成立,即成立,
那么当n=k+1时,,
即当n=k+1时,命题也成立,
所以对于一切n∈N*,都有,
bn=1-an,取,
即,
所以对于任意实数M>0,取t>2M,且,
有
所以不存在满足条件的M.