答案:
B
【解析】
由a1=﹣1,an+1=|1﹣an|+2an+1,可得a2,a3,a4,运用等差数列的定义即可判断①,等比数列的通项公式即可判断②,由当n≥2时,an=Sn﹣Sn﹣1,即可判断③.
解:数列{an}满足a1=﹣1,an+1=|1﹣an|+2an+1,
可得a2=|1﹣a1|+2a1+1=2﹣2+1=1,
a3=|1﹣a2|+2a2+1=0+2+1=3,
a4=|1﹣a3|+2a3+1=2+6+1=9,
则a4﹣a3=6,a3﹣a2=2,即有a4﹣a3≠a3﹣a2,
则数列{an}不是等差数列,故①不正确;
an=3n﹣2,不满足a1=﹣1,故②不正确;
若Sn满足n=1时,a1=S1=﹣1,
但n=2时,a2=S2﹣S1(﹣1)=1,
当n≥2时,an=Sn﹣Sn﹣1
=3n﹣2,n≥2,n∈N*.
代入an+1=|1﹣an|+2an+1,
左边=3n﹣1,右边=3n﹣2﹣1+2•3n﹣2+1=3n﹣1,
则an+1=|1﹣an|+2an+1恒成立.
故③正确.
故选:B.