返回 满分5 > 初中数学试题 首页  

已知在平面直角坐标系xOy中(如图),已知抛物线y=﹣x2+bx+c经过点A(2,2),对称轴是直线x=1,顶点为B.

(1)求这条抛物线的表达式和点B的坐标;

(2)点M在对称轴上,且位于顶点上方,设它的纵坐标为m,联结AM,用含m的代数式表示AMB的余切值;

(3)将该抛物线向上或向下平移,使得新抛物线的顶点C在x轴上.原抛物线上一点P平移后的对应点为点Q,如果OP=OQ,求点Q的坐标.

 

答案:
(1)抛物线的解析式为y=﹣x2+2x+2.顶点B坐标为(1,3). (2)cot∠AMB=m﹣2. (3)点Q的坐标为(,﹣)或(,﹣). 【解析】 试题分析:(1)依据抛物线的对称轴方程可求得b的值,然后将点A的坐标代入y=﹣x2+2x+c可求得c的值; (2)过点A作AC⊥BM,垂足为C,从而可得到AC=1,MC=m﹣2,最后利用锐角三角函数的定义求解即可; (3)由平移后抛物线的顶点在x轴上可求得平移的方向和距离,故此QP=3,然后由点QO=PO,QP∥y轴可得到点Q和P关于x对称,可求得点Q的纵坐标,将点Q的纵坐标代入平移后的解析式可求得对应的x的值,则可得到点Q的坐标. 试题解析:(1)∵抛物线的对称轴为x=1,∴x=﹣=1,即 =1,解得b=2. ∴y=﹣x2+2x+c. 将A(2,2)代入得:﹣4+4+c=2,解得:c=2. ∴抛物线的解析式为y=﹣x2+2x+2. 配方得:y=﹣(x﹣1)2+3.∴抛物线的顶点坐标为(1,3). (2)如图所示:过点A作AC⊥BM,垂足为C,则AC=1,C(1,2). ∵M(1,m),C(1,2),∴MC=m﹣2.∴cot∠AMB==m﹣2. (3)∵抛物线的顶点坐标为(1,3),平移后抛物线的顶点坐标在x轴上, ∴抛物线向下平移了3个单位. ∴平移后抛物线的解析式为y=﹣x2+2x﹣1,PQ=3. ∵OP=OQ,∴点O在PQ的垂直平分线上. 又∵QP∥y轴,∴点Q与点P关于x轴对称. ∴点Q的纵坐标为﹣ . 将y=﹣代入y=﹣x2+2x﹣1得:﹣x2+2x﹣1=﹣,解得:x= 或x=. ∴点Q的坐标为(,﹣)或(,﹣).
推荐试题