返回 满分5 > 初中数学试题 首页  

如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

   

 

答案:
(1)详见解析;(2)详见解析;(3)详见解析. 【解析】分析:(1)由BC⊥AC,DE⊥BC,得到DE∥AC,从而判断出四边形ADEC是平行四边形.即可, (2)先判断出△BFD≌△CFE,再判断出BC和DE垂直且互相平分,得到四边形BECD是菱形. (3)先判断出∠CDB=90°,从而得到有一个角是直角的菱形是正方形. 解析:(1)证明:∵直线m∥AB, ∴EC∥AD. 又∵∠ACB=90°, ∴BC⊥AC. 又∵DE⊥BC, ∴DE∥AC. ∵EC∥AD,DE∥AC, ∴四边形ADEC是平行四边形. ∴CE=AD. (2)当点D是AB中点时,四边形BECD是菱形. 证明:∵ D是AB中点, ∴DB=DA 又∵直线m∥AB,CE=AD ∴DB= CE,DB ∥ CE ∴四边形BDCE是平行四边形 又∵DE⊥BC ∴四边形BECD是菱形 (3)当∠A的大小是45°时,四边形BECD是正方形.  
推荐试题