如图,在△ABC中,O是AC上一动点(不与点A、C重合),过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)OE与OF相等吗?证明你的结论;
(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.
答案:
(1)OE=OF(2)当O运动到AC中点时,四边形AECF是矩形
【解析】整体分析:
(1)利用等角对等边分别判断OE=OC,OF=OC;(2)先判断四边形AECF是平行四边形,再证明∠ECF=90°.
解:(1)OE=OF,
∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠FCD,
∵CE平分∠ACB,CF平分∠ACD,
∴∠BCE=∠ACE,∠OCF=∠FCD,
∴∠ACE=∠OEC,∠OCF=∠OFC,
∴OE=OC,OC=OF,
∴OE=OF.
(2)当O运动到AC中点时,四边形AECF是矩形,
∵AO=CO,OE=OF,
∴四边形AECF是平行四边形,
∵∠ECA+∠ACF=∠BCD,
∴∠ECF=90°,
∴四边形AECF是矩形.