返回 满分5 > 初中数学试题 首页  

如图,直线MN与直线ABCD分别交于点EF1与∠2互补.

1)试判断直线AB与直线CD的位置关系,并说明理由。

2)如图2BEF与∠EFD的角平分线交于点PEPCD交与点G,点HMN上一点,且GHEG求证:PFGH

3)如图3在(2)的条件下连结PHKGH上一点使∠PHKHPK,作PQ平分∠EPK问∠HPQ的大小是否发生变化?若不变请求出其值.若变化说明理由.

 

答案:
(1)证明见解析;(2)证明见解析;(3)45° 【解析】试题分析:(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD; (2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH; (3)利用三角形外角定理、三角形内角和定理求得∠4=90°-∠3=90°-2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°. 试题解析:(1)如图1, ∵∠1与∠2互补, ∴∠1+∠2=180°. 又∵∠1=∠AEF,∠2=∠CFE, ∴∠AEF+∠CFE=180°, ∴AB∥CD; (2)如图2,由(1)知,AB∥CD, ∴∠BEF+∠EFD=180°. 又∵∠BEF与∠EFD的角平分线交于点P, ∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°, ∴∠EPF=90°,即EG⊥PF. ∵GH⊥EG, ∴PF∥GH; (3)∠HPQ的大小不发生变化,理由如下: 如图3,∵∠1=∠2, ∴∠3=2∠2. 又∵GH⊥EG, ∴∠4=90°-∠3=90°-2∠2. ∴∠EPK=180°-∠4=90°+2∠2. ∵PQ平分∠EPK, ∴∠QPK=∠EPK=45°+∠2. ∴∠HPQ=∠QPK-∠2=45°, ∴∠HPQ的大小不发生变化,一直是45°.  
推荐试题