返回 满分5 > 初中数学试题 首页  

已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有(  )

说明: 满分5 manfen5.com

A.3个             B.2个              C.1个              D.0个

 

答案:
B 【解析】 试题分析:首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出②的正误;利用a-b+c=0,求出a-2b+4c<0,再利用当x=4时,y>0,则16a+4b+c>0,由①知,b=-2a,得出8a+c>0. 根据图象可得:a>0,c<0,对称轴>0, ①∵它与x轴的两个交点分别为(-1,0),(3,0), ∴对称轴是x=1, ∴, ∴b+2a=0, 故①错误; ②∵a>0, ∴b<0, ∵c<0, ∴abc>0,故②错误; ③∵a-b+c=0, ∴c=b-a, ∴a-2b+4c=a-2b+4(b-a)=2b-3a, 又由①得b=-2a, ∴a-2b+4c=-7a<0, 故此选项正确; ④根据图示知,当x=4时,y>0, ∴16a+4b+c>0, 由①知,b=-2a, ∴8a+c>0; 故④正确; 故选B. 考点:二次函数的图象与系数的关系
推荐试题