返回 满分5 > 初中数学试题 首页  

(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:① DC = BC; ②AD+AB=AC.请你证明结论②;

6ec8aac122bd4f6e

 (2)在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

 

答案:
(1)证明见解析(2) 成立,证明见解析 【解析】(1)证明: ∵∠MAN=120°,AC平分∠MAN.                         ∴∠DAC = ∠BAC =600                         ∵∠ABC=∠ADC=90°,                          ∴∠DCA=∠BCA=30°,                                                        在Rt△ACD,Rt△ACB中,∠DCA=30° ∠BCA=30°                         ∴AC=2AD,   AC = 2AB, ∴2AD=2AB     ∴AD=AB                           ∴AD+AB=AC. (2)解:(1)中的结论① DC = BC; ②AD+AB=AC都成立, 理由一:如图2,在AN上截取AE=AC,连结CE,                  ∵∠BAC =60°, ∴△CAE为等边三角形, ∴AC=CE,∠AEC =60°,                                              ∵∠DAC =60°,∴∠DAC =∠AEC,                                                ∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°, ∴∠ADC =∠EBC, ∴,                                                                                                                                                                               ∴DC = BC,DA = BE,  … ∴AD+AB=AB+BE=AE,   ∴AD+AB=AC. 或者理由二:如图,过C作CE⊥AN,CF⊥AM于E、F 证明△BCE≌△DCF,得到 DC=BC,BE=DF 即AC=AE+AF=AB+AD亦可 得分参照理由一给分 (1)根据角平分线的性质可得∠DAC=∠BAC=60°,又已知∠ABC=∠ADC=90°,所以∠DCA=∠BCA=30°,根据直角三角形的性质可证AC=2AD,AC=2AB,所以AD+AB=AC. (2)根据已知条件可在AN上截取AE=AC,连接CE,根据AAS可证△ADC≌△EBC,得到DC=BC,DA=BE,所以AD+AB=AB+BE=AE,即AD+AB=AC.
推荐试题