返回 满分5 > 初中数学试题 首页  

(本题满分12分)如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y=14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1.

6ec8aac122bd4f6e

1.(1)求B点坐标;

2.(2)求证:ME是⊙P的切线;

3.(3)设直线AC与抛物线对称轴交于N,Q点是此对称轴上不与N点重合的一动点,①求△ACQ周长的最小值;

②若FQ=t,SACQ=S,直接写出S与t之间的函数关系式.

 

答案:
1.(1)如图甲,连接PE、PB,设PC=n, ∵正方形CDEF的面积为1, ∴CD=CF=1, 根据圆和正方形的对称性知:OP=PC=n, ∴BC=2PC=2n, ∵而PB=PE, ∴PB2=BC2+PC2=4n2+n2=5n2,PE2=PF2+EF2=(n+1)2+1, ∴5n2=(n+1)2+1, 解得:n=1或n=- 12(舍去), ∴BC=OC=2, ∴B点坐标为(2,2); 2.(2)如图甲,由(1)知A(0,2),C(2,0), ∵A,C在抛物线上, \∴ {c=214×4+2b+c=0, 解得: {c=2b=-32, ∴抛物线的解析式为:y= 14x2- 32x+2= 14(x-3)2- 14, ∴抛物线的对称轴为x=3,即EF所在直线, ∵C与G关于直线x=3对称, ∴CF=FG=1, ∴MF= 12FG= 12, 在Rt△PEF与Rt△EMF中, ∠EFM=∠EFP, ∵ FMEF=121=12, EFPF=12, ∴ FMEF=EFPF, ∴△PEF∽△EMF, ∴∴∠EPF=∠FEM, ∴∠PEM=∠PEF+∠FEM=∠PEF+∠EPF=90°, ∴ME是⊙P的切线; 3. (3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ, 则有AQ=A′Q, ∴△ACQ周长的最小值为AC+A′C的长, ∵A与A′关于直线x=3对称, ∴A(0,2),A′(6,2), ∴A′C=(6-2)2+22=2 5,而AC=22+22=2 2, ∴△ACQ周长的最小值为2 2+2 5; ②当Q点在F点上方时,S=t+1, 当Q点在线段FN上时,S=1-t, 当Q点在N点下方时,S=t-1. 【解析】略
推荐试题